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A coherent structure is revealed experimentally by a dyeing technique in the boundary layer of Rayleigh-
Bénard convection in water. Dye accumulates in streaks aligned with the mean flow. Possible mechanisms for
the formation of these streaks are discussed.
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Fluctuations in a turbulent flow are usually classified in
two broad classes. There are those fluctuations which are
disorganized enough so that we have to unspecifically de-
scribe them as “turbulent.” But one sometimes finds recog-
nizable patterns, such as groups of vortices, or vortices of
special shape, which appear repeatedly. These organized re-
current patterns are “coherent structures” which are distin-
guished from the turbulent background. Coherent structures
have been studied particularly well in turbulent boundary
layers, where an understanding of these structures contrib-
utes to our ability to control flows[1]. More fundamentally,
coherent structures are a curiosity in themselves because they
exist in defiance of a turbulent environment. If one wants to
give a more informative description than just saying that a
flow is turbulent, the next step consists in enumerating its
coherent structures. The identification of coherent structures
is thus important because it reveals some order in otherwise
featureless and unruly dynamics.

Thermal convection is an omnipresent phenomenon in en-
gineering applications, astrophysics, and geophysics. The ar-
chetypal buoyant coherent structure is the plume. Its charac-
teristics have been studied in detail(see, for example, Ref.
[2]) and plumes have remained for a long time the only
known coherent structure of turbulent convection. Zocchiet
al. [3] later identified “swirls” and waves riding the thermal
boundary layer. Here, we add a coherent structure in the
boundary layers of Rayleigh-Bénard convection. A dye tech-
nique to be described below reveals accumulation of dye in
streaks exactly as it would be produced by pairs of stream-
wise counterrotating vortices.

A cubic cell of size 20 cm filled with water was used in
our visualization experiments. The side walls were made of
10 mm thick plexyglas whereas the top and bottom plates
were 10 mm thick silver coated copper plates. Electrical
heaters were attached to the bottom plate and the temperature
of the top plate was regulated by circulating water from a
thermostat through pipes welded to the top plate. The plate
temperatures were uniform in space and time to better than
0.1 K. The temperatures of the two plates differed by ap-
proximately 10 K and were adjusted such that the bulk tem-
perature in the cell was near the room temperature in the
laboratory. The data below are for a Prandtl number Pr of 6.7
and a Rayleigh number Ra of 1.33109. The entire setup is
nearly identical to the one used in Ref.[4]. Measurements of
velocity and temperature profiles in the new cell were con-
sistent with those in Ref.[4]. A single convection roll exists
in the cell such that the average flow near the plates is di-
rected diagonally across the plates.

Flow structures were visualized with the thymol blue
technique[5]. The pH-indicator thymol blue was dissolved
at a concentration of around 10−4 per weight in the water.
The solution was titrated with HCl and NaOH just to the acid
side of the end point of the indicator so that the solution was
orange yellow. The bottom plate of the cell was used as
cathode and a wire sticking into the cell as anode. If a current
is sent through the cell, H+ ions are drawn towards the bot-
tom plate where they react to H2 which leads to a local
increase of thepH. If the increase is large enough, the liquid
appears dark blue. Once a darkened drop of fluid gets carried
away from the electrode by the flow, it loses through diffu-
sion its pH contrast with the environment and turns orange
yellow again. In our experiments, the voltage applied be-
tween the electrodes was typically 3 V so that the production
of blue dye was too small to be visible everywhere. Only
higher than average concentrations of blue dye appeared
dark.

The basic observation is that dark fluid accumulates in
streaks aligned with the mean wind(Fig. 1). Streaks appear
in groups within which there is an apparent periodicity. The
streaks are advected by the mean circulation and lift off the
plate when they approach a sidewall. The number of visible
streaks increases with downstream distance and the first ones
appear shortly before they reach the diagonal of the bottom
plate perpendicular to the mean flow(the lineAB in Fig. 1).

The appearance of streaks indicates that blue dye is swept
together by the flow. The convergence of the flow towards
the lines where streaks form requires that fluid rises above
the streaks and that downwellings exist in between streaks. A

FIG. 1. View of the bottom plate. The point labeledA is one
corner of the plate, and the line throughA andC is one side of the
plate. The mean flow is from the near left to the far right corner. A
few dye streaks are marked with arrows.
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pattern of closed streamlines producing a single streak would
be a pair of counterrotating vortices superposed on, and
aligned with, the mean flow.

In these experiments, the solution must be carefully ti-
trated and the voltage chosen as small as possible so that the
observed dye is as close as possible to the plate. At higher
voltages, the blue dye still appears in streaks, but much of it
is separated from the plate and probes regions in which the
flow is clearly three dimensional instead of nearly parallel to
the boundary.

In order to acquire quantitative information about the
streak spacing, pictures of the cell have been taken with a 5
megapixel charge-coupled device camera. One photograph
has been taken every 60 s so that consecutive pictures are
statistically independent. A grid of lines spaced by 2 cm was
drawn with a graphite pencil on the bottom plate for calibra-
tion of the pictures. We determined manually for each picture
the positions at which streaks cross either the main diagonal
perpendicular to the mean flow(AB in Fig. 1), or where they
cross the diagonalCD (see Fig. 1) which is a line joining two
points on the edges of the plate which are 4 cm away from
the corners in the downstream direction(this diagonal has a
length of 19.8 cm).

Streaks are uniformly distributed overAB or CD. The
streaks thus are not related to possible defects in the bottom
plate. The histogram of streak separations on the other hand
has a pronounced peak around 0.7 cm(Fig. 2). Less exten-
sive statistics for Ra in between 53108 and 43109, and
with Pr ranging from 3.6 to 6.7 have shown that the position
of this peak does not vary by more than 20 % in the range of
parameters investigated. The histogram of the number of
streaks crossingCD at any instant in time is shown in Fig. 3.
The average number increases from 6.3 to 9.5 in going from
AB to CD.

We will now discuss different mechanisms which might
lead to streak formation. The peak in the histogram of streak
spacings is a hint at an underlying periodicity. Periodic
streamwise vortices are well known from isothermal momen-
tum boundary layers where they have a periodicity length of
about 100 wall units[one “wall unit” is n1/2sdU/dzd−1/2

wheren is the viscosity anddU/dz the velocity gradient at
the wall]. However, these structures occur at much higher
Reynolds numbers than we have in our convection cell.
Based on the advection velocity at the edge of the viscous
boundary layer and the thickness of that layer, the Reynolds
number is less than 30. Not surprisingly, 100 wall units cor-
respond to 8.5 cm in the convection cell which is much too
large to explain the peak in the histogram of streak separa-
tions.

There is a theory successfully predicting the streamwise
vortices in isothermal boundary layers which is based on the
observation that the linearized stability problem is not nor-
mal so that large transient growth can occur. We extended
this theory and the calculations in Refs.[6] and [7] by in-
cluding a linear temperature profile and the buoyancy force.
At the parameters relevant for the experiment, no significant
transient amplification occurs, so that this mechanism must
be excluded, too.

The next candidate is linear instability. The thermal
boundary layer is notoriously stable with respect to convec-
tion within that layer. However, the hot fluid near the bottom
plate underneath the cooler bulk of the fluid is Rayleigh-
Taylor unstable. Temperature and velocity in the boundary
layers are of course fluctuating in time and the actual profiles
are shaped by turbulent transport. We nonetheless solved the
linear stability problem for this layering using as basic state
the time averaged velocity and temperature profiles mea-
sured experimentally in Ref.[4] in order to find a possible
connection between streak formation and a Rayleigh-Taylor
instability.

The linear stability problem is described by the equations

]tv + sv · =dU + sU · =dv = −
1

r
= p + n=2v − gaT, s1d

¹ ·v = 0, s2d

]tT + v · = T0 + U · = T = k=2T. s3d

p is the pressure;g the gravitational acceleration, andr, n, a,
and k are the density, viscosity, thermal expansion coeffi-

FIG. 2. The bar chart is a histogram of the streak separationD
measured on the lineCD in Fig. 1. 134 photographs showing a total
of 1277 streaks were used. The continuous line isHsDd given by
Eq. (4) for DD=0.2 mm,d=0.6 cm, andp=0.82.

FIG. 3. The bar chart is the probability distribution for the num-
ber of streaksn visible in any one photograph on the lineCD for the
same data as in Fig. 2. The dots givePsn,Ld [Eqs.(5) and(6)] for
L=19.8 cm,d=0.6 cm, andp=0.82.
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cient, and thermal diffusivity, respectively. A Cartesian coor-
dinate systemsx,y,zd is used such that thez axis points
upwards and the bottom plate is located atz=0. Uszd and
T0szd are the undisturbed profiles of velocity and tempera-
ture. The total velocity isvsx,y,z,td+Uszd and the total tem-
perature isTsx,y,z,td+T0szd. The problem is linear inv and
T with coefficients independent ofx, y, and t so that the
dependence ofv and T on these variables must be of the
form esteiskxx+kyyd. Three ordinary differential equation inz
are obtained fromz·= 3 s1d, z·= 3 = 3 s1d and (3) which
pose for any fixed wave numberskx and ky an eigenvalue
problem with the growth rates as eigenvalue. The boundary
conditions used to complete the eigenvalue problem arev
=0 andT=0 atz=0 andz=zmax, wherezmax is an arbitrarily
chosen upper boundary of the computational domain. The
eigenvalues are computed numerically with a Chebychev
spectral method. WithU and T0 taken from Ref.[4], the
x-axis chosen parallel toU, and with the material properties
of water, one finds that the most unstable eigenmode be-
comes independent of the choice ofzmax for zmax.6 mm.
The most unstable mode is also virtually unaffected by the
fact thatUÞ0. U is apparently too small to play a significant
role except that it gives a preference to longitudinal over
transverse vortices. The most unstable mode is characterized
by kx=0, 2p /ky=6.5 mm, ands=0.54 s−1. For comparison,
note that the thicknesses of the temperature and velocity
boundary layers are 1.9 mm, and 3.8 mm, respectively. The
cell used here is somewhat bigger than the cell used in Ref.
[4]. Correcting for the size difference, a wavelength of
7.2 mm is obtained for the new cell.

The computed growth rate, combined with the advection
velocity, implies that there should be at least seven times as
many visible streaks onCD than onAB. In reality, this factor
is approximately 1.5. The observed structures must thus be
far beyond the stage of exponential growth if they result
from a Rayleigh-Taylor instability.

Up to now, we have interpreted the peak in the histogram
of separations as the result of a periodicity. We now show
how a complementary point of view explains the shape of
the histograms in Figs. 2 and 3. Assume that the streaks are
signatures of isolated pairs of vortices. Two such structures
cannot come too close to each other because they need room
from where to collect fluid. If we suppose that streaks are
mutually independent apart from this excluded volume, we
can compute histograms and compare them to experimental
data.

Consider a diagonal of lengthL and denote byx the dis-
tance along the diagonal from one of its end points. For
simplicity, we will assume that all structures have the same
lateral sized. If a streak at locationx is created by a pair of
vortices, the streak is surrounded by a vortex of sized /2 on
each side and the structure extends fromx−d /2 to x+d /2.
The point atx−d /2 will be called the “left edge” of the
coherent structure. Denote bypdx the probability to find a
left edge in an intervaldx. The probability to find a segment
of length l free of left edges is thene−pl.

In order to compute the experimental histogram, we have
to take into account the finite length of the diagonal. If two
streaks are separated by a distanceD, the leftmost of the two

streaks must have a left edge at a distance of at mostL−D
−d from the left end of the diagonal so that the second streak
still fits onto the diagonal. Left edges are equally distributed
in the intervalf0,L−dg. The probability to find two streaks
separated by a distance betweenD andD+dD is equal to the
probability that a streak picked at random is in the interval
f0,L−D−dg, multiplied by the probability not to find a left
edge over a distanceD−d, multiplied by the probability to
find one in the following intervaldD, which is all taken
together equal tosL−D−dd / sL−dde−psD−ddp dD. A histogram
of streak separationsHsDd with bins of sizeDD constructed
from Np photographs with on averageN visible streaks is
given by

HsDd = 5L − D − d

L − d
e−psD−ddp D D NpN, d , D , L − d

0, otherwise.

s4d

This expression will be used to fit the histogram in Fig. 2.
Let us now turn to Fig. 3. Denote byPsn, ld the probability to
find n streaks at any given time in an interval of lengthl.
Psn, ld can be computed recursively as follows:

Ps0,ld = H1, l , d

e−psl−dd, l ù d,
s5d

and forn.0:

Psn,ld = 50, l , nd

E
0

l−d

dxe−pxpPsn − 1,l − x − dd, l ù nd.
s6d

The last line represents the probability not to find a left edge
of a structure up to locationx, multiplied by the probability
to find one immediately afterwards, multiplied by the prob-
ability to find n−1 further streaks in the remaining interval,
integrated over allx in which the left edge of a structure can
be located.

A disadvantage of this simple model is thatHsDd is
strictly zero forD,d which poorly represents the histogram
of streak separations at smallD. A more complete model
would allow for a distribution ofd which we do not do here
because it inordinately increases the number of adjustable
parameters. Instead, we take ford approximately theD at
which the experimental histogram is maximum and adjustp
so thatPsn,Ld fits Fig. 3 as well as possible. We then plugp
into the expression forHsDd in (4) and verify that it accept-
ably fits Fig. 2. The results of this procedure are shown in
Figs. 2 and 3.

It is seen that it is not necessary to assume a periodicity in
order to reproduce a histogram of streak separations with a
peak. In fact, within the limits of the statistical noise on the
experimental side and the restriction to a uniqued in the
model, the experimental data are satisfactorily fitted by the
assumption of mutually independent coherent structures.

We have also seen above that the size of these structures
is close to the periodicity length of the Rayleigh-Taylor in-
stability of the thermal boundary layer. Further experiments
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are necessary in order to decide whether the streaks arise
from pairs of rolls generated by such an instability. For ex-
ample, a variation of Ra over several decades will show
whether the linear stability analysis presented here repro-
duces the most probable streak spacing at all Ra. As long as
the Reynolds number is small in the boundary layers, the
thickness of the boundary layer is the only length scale en-
tering the mathematical problem, so that the most probable
streak spacing should scale as Nu−1, where Nu is the Nusselt
number.

In summary, we have demonstrated the existence of a
hitherto unnoticed coherent structure in the boundary layers
of Rayleigh-Bénard convection. This structure reveals itself

through dye accumulation in streaks aligned with the mean
wind which keep a characteristic separation from each other.
The dye pattern could be produced by pairs of counterrotat-
ing vortices, but no direct visualization of the velocity field
has been made. Streamwise vortices are well known from
isothermal boundary layers, but the mechanism of formation
of these vortices must be different here because of the low
Reynolds number of the boundary layer flow. The statistics
of the streaks are consistent with the notion that they are
created by coherent structures which are independent of each
other except for an excluded volume effect.

This work was supported by the “Deutsche Forschungs-
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